
EMBODY(1) Environment Modules EMBODY(1)

NAME
Embody − Environment Modules Build system

SYNOPSIS
./EMBODY[options]

DESCRIPTION
Embody (Environment Modules Build) is a software build tool with integrated support for the environ-
ment-modules package. The tool eases and automates the task of building and installing software packages
from source or binary distributions, as well as the management of associated modulefiles.

Embody provides a framework to script the tasks that are customarily described inREADME andINSTALL
files, run these tasks in order or individually, and capture their output in log files.

The design goal was to reduce routine installation tasks to defining variables and shell functions for the key
tasks, thereby providing a self-documenting and unified skeleton for maintaining package installations.
While there is some conceptual overlap with rpm(8), the goal is simplicity and decoupling from rpm’s
dependencies and database, which enables coexistence of several builds. Usefulon HPC systems, new
builds can be deployed centrally to shared file systems and without affecting running jobs.

OPERATION
Embody consists of a librarylibembodyand a user-defined package-specific script namedEMBODYby con-
vention. Both are written inbash(1).

Package placement

With Embody, software is normally deployed into package-specific directories, typically having subdirec-
tories like bin, lib, and man, as determined by the package’s native install procedure. This structure will
allow sev eral versions and builds to coexist.

The name of the top-level directory is generated in a variable$prefix , which is constructed roughly as:

$PACKAGE_ROOT/$NAME-$VERSION-$BUILD

where the constituent variables are defined by the user inEMBODYand by site-defaults in libembody. A
modulefile(5) is automatically created and placed in

$MODULE_ROOT/$NAME/$VERSION-$BUILD

If, during modulefile installation, a modulefile from a prior version exists in$MODULE_ROOT/$NAME/, a
.versionfile is created if it does not already exist, so as to prevent premature use of the new build by user’s
shells. Thesite administrator can later edit or remove this .versionfile (see ‘‘Modulefile management’’
options), preferably after users have been notified of the upgrade.

The user runningEMBODYmust have write permission in$PACKAGE_ROOTand$MODULE_ROOT. With
a proper setup, such as one employing group permissions, it is often not necessary to run, and in particular
install, as root.

Staging Functions

Package deployment is done by a series of so-called staging functions inbash(1) syntax.Default functions
are pre−defined, and may be re-defined by the user in theEMBODYscript. Thepredefined functions detect
a couple of deployment styles and execute the canonical action as described below underOPTIONS. The
recognized styles are, in this order:

• rpmbuild(8) from aspecfile

• Python-style setup.py

• GNU-style configure + make

The functions and their correspondence to options are:

embody-1.0.4 2012-12-13 1

EMBODY(1) Environment Modules EMBODY(1)

===
Function name Option Notes Provided?

stage_download --download (1) no
stage_zap -z (2) no
stage_extract -x (1) no
stage_remove -r (3) yes
stage_uninstall -u yes
stage_distclean -d yes
stage_prep -p yes
stage_build -b yes
stage_install -i yes
stage_install_aux -a yes
stage_module -m yes
stage_test -t yes
stage_clean -c (4) yes

embody_stages (5)
embody_wipe -w (5)
===
(1) Normally runs only once unless --force is given.
(2) Normally runs only as part of stage_extract.
(3) Normally runs only as part of stage_uninstall.
(4) Not run as part of default sequence.
(5) Not a staging function - do not redfine.

Unless any of the specific options above are given to EMBODY to explicitly pick one or more stages, all
staging functions above except stage_clean are run in sequence, as hardcoded in theembody_stages
sequencing function.

A build-specific directory is created in the package source tree to hold log files and (eventually) a test direc-
tory:

embody-$VERSION-$BUILD/

The output of each individual stage is logged into:

embody-$VERSION-$BUILD/<stagename>.log

and the output of the wholeEMBODYrun is logged into:

embody-$VERSION-$BUILD/last.log

These files, as indeed the entire source and build directory whereEMBODYruns, can be left after the build
should a problem arise in production. Calling the−w option, however, will remove all builds’ log dirs.

The EMBODY script

The user creates theEMBODYscript to reside in a typically version-specific work directory for a package.
The name can be anything, butEMBODYsorts beforeREADMEor INSTALLand stands out.

The script must do the following:

• set package-related variables (NAME, VERSION, BUILD),

• set variables for modulefile content (MODULE_WHATIS, MODULE_HELP, etc.),

• load theembodymodule and any modules that are prerequisite for the current package,

• source theembodylibrary,

• (re−)define zero or more staging functions, and finally,

• run theembody_stages sequencing function, the last and main executable statement.

embody-1.0.4 2012-12-13 2

EMBODY(1) Environment Modules EMBODY(1)

Most of the script will be ‘‘merely’’ definitions of variables and staging functions.

Variables in the EMBODY script

The following variables are expected to be set in theEMBODYscript:

* Package definition
NAME Package name, without version and build tags. Acceptable characters are letters

(possibly in mixed case), numerals, and dashes ‘‘−’ ’. Underscore‘‘ _’’ is dis-
couraged, and any other ‘‘funny’’ characters are disallowed.

VERSION Package version [optional]. Should consist of numerals, dot ‘‘.’’ , and letters.

BUILD Build tag [optional]; can be arbitrarily long. Acceptable characters as inNAME.

BUILD_MULTI A multi-line build specification (see MULTI-BUILDS below). Ignoredwhen
BUILD is set.

SPECFILE name of anrpm(8) specfile. The variablesNAME, VERSION, BUILD, MOD-
ULE_WHATIS, and MODULE_HELPare set from contents of the spec file, but
may be overridden.

* Site defaults
The following are normally predefined in the site’s libembody file:

PACKAGE_ROOT base directory for packages

MODULE_ROOT base directory for modulefiles, default:$PACKAGE_ROOT/modulefiles

* M odulefile help items
These following are converted toproc ModulesHelp andmodule−whatis , respectively:

MODULE_WHATIS whatis string (should be one line) − required.If this value is missing, the mod-
ulefile creation will be skipped.

MODULE_HELP Help text, may be several lines.

* M odulefile contents
These are placed verbatim into the modulefile (leading spaces are stripped):

MODULE_DEP Zero or moreconflict foo or prereq foo

MODULE_CORE The bulk part of the modulefile,prepend PATH etc.

MODULE_AUX Package-specific auxiliary definitions.

The staging functions have access to all of these variables.

Automatisms

1. NAMEandVERSIONare actually optional and are guessed from the package directory if it is named in
the customary formname−x.y.z. Directories of the formname−x[.y[.z]][−more] are also recognized.

2. If MODULE_COREis left empty, it is guessedbased on the existence of subdirs found in$prefix/
afterstage_install. A complete such guess is equivalent to the following:

embody-1.0.4 2012-12-13 3

EMBODY(1) Environment Modules EMBODY(1)

MODULE_CORE="
prepend-path PATH \$prefix/bin
prepend-path MANPATH \$prefix/man
prepend-path MANPATH \$prefix/share/man
prepend-path PYTHON_PATH \$prefix/lib/python
prepend-path PYTHON_PATH \$prefix/lib64/python
prepend-path LD_LIBRARY_PATH \$prefix/lib
prepend-path LD_LIBRARY_PATH \$prefix/lib64
prepend-path INCLUDE \$prefix/include

"

3. For convenience, an environment variable<NAME>_HOMEis automatically added:

setenv <NAME>_HOME $prefix

This is a customary installation requirement for many packages, and also gives users a uniform names-
pace to access the active package, e.g.$FOO_HOME/share/ . <NAME>is the uppercased value of
$NAME, with − replaced by_.

OPTIONS
Stage selection

The following options select one or morestaging functions. Without an explicit selection, most staging
functions are executed in the order shown in the table above, subject to the conditions noted. The output fo
each stage function is logged underembody_logdir /name.log.

−−download Download source files into a local cache.Has effect only if the user defined a
stage_download function (no default). Thereis no short option because I ran
out of convenient letters.

Recommendations:

* Put downloads into a directory above the version-specific current working
directory, such as ../dist . This will avoid re-downloads and simplifies cleanup
operations.

* Define variables in the preamable ofEMBODYto refer to the downloaded files
in stage_download and stage_extract.

−z, −−zap Remove source files, i.e., clean the working directory. Has effect only if the user
defined astage_zap function (no default).

−x, −−extract Unpack source files; implies−−zap. Has effect only if the user defined a
stage_extract function (no default).

−u, −−uninstall Uninstall the package and remove its modulefile; implies−−remove (see below).

−d, −−distclean Perform distclean stage; default:make distclean or setup.py clean .

−p, −−prep Perform prep stage; default:./configure , NOP for setup.py .

−b, −−build Perform build stage; default:make or setup.py build .

−i, −−install Install; default:make install or setup.py install

−a, −−aux Install auxiliary files; no default.

Experimental: Prior to the actual call tostage_install_aux, the currentEMBODY
script will be preserved in$prefix/ as .EMBODY, and the build directory will
be symlinked as.src .

−m, −−module Install the modulefile.

−t, −−test Perform a test; default: make check or make test (depending on Makefile);
test.py for python. Prior to running stage_test, the new modulefile will be
loaded.

embody-1.0.4 2012-12-13 4

EMBODY(1) Environment Modules EMBODY(1)

−c, −−clean Perform cleanup; default:make clean or setup.py clean .

−X, −U, −D, −P, −B, −I, −A, −M, −T
Perform the stages in the usual orderup to the given stage. Infact, −T is equiv-
alent to the default sequence.

Modulefile management

−e, −−edit Edit the modulefile.

−l, −−list List installed module versions and show the contents of.version, if it exists.
Option−v gives more details.

−r, −−remove Remove the .versionfile, thereby making the lexicographically latest modulefile
the default module. (Note that this can produce incorrect behavior when a version
number component changes from .9 to .10 .)

With −−force, also remove the modulefile corresponding to the current
NAME/VERSION−BUILDtriple.

−s, −−show Construct and show the modulefile, but do not install.

Control

−1, −2, −3, ... (any numeric option) Limit a multi-build to just the corresponding line(s) from
$BUILD_MULTI (see MULTI-BUILDS below).

−n, −−no−run dry−run — donot actually run the staging functions.

−f, −−force Remove various safeguards and permit running as root.

−w, −−wipe Wipe embody log directories (all builds).

General options

−h, −−help Show option summary.

−q, −−quiet Suppress trace output (test output is still shown).

−v, −−verbose Generate verbose output; may be repeated to get increased verbosity.

−−version Print libembody version number.

−−debug Generate debugging output.

Av ailable options

EMBODY is normally a shell script and may process its own options.Any options not consumed will be
interpreted bylibembody. Without requiring the use of−−, a few alphabet slots are available: −g, −j , −k,
−o, −y. See <http://www.faqs.org/docs/artu/ch10s05.html> for customary meanings.

MULTI-BUILDS
A BUILD_MULTI variable specified inEMBODY results in several closely related builds. Theformat is
multi-line (requiring enclosing single or double quotes), as follows:

c omment
buildtag1 var1=value var2=value ...
buildtag2 var1=value var2=value ...
...

Each line defines a value forBUILD and several associated variables. EMBODYwill be called recursively
once for each line. During each callBUILD will be set to its respective buildtag and all associated vari-
ables will have their respective values. Emptylines and ‘#’−style comments inBUILD_MULTI are
ignored. Settingan explicit value forBUILD will preempta multi−build.

embody-1.0.4 2012-12-13 5

EMBODY(1) Environment Modules EMBODY(1)

VARIABLES
In addition to any variables defined in./EMBODY, the following variables are available to staging func-
tions:

BUILD (during multi−builds)
Will be set to eachbuildtag in turn.

package_build = $VERSION−$BUILD
Unique indentifier of the current build; automatically added to the modulefile as Tcl variablever-
sion .

package_name = $NAME−$package_build
Fully qualified package name.

prefix = $PACKAGE_ROOT/$package_name
Installation destination directory; automatically added to the modulefile as Tcl variableprefix .

embody_logdir = embody−$package_build
Workdir for current build logs.

embody_testdir = test−embody−$package_build
Name of a build-specific test directory.

This is intended to keep a native test directory pristine across subsequent builds, should themake
distclean step be ignorant of it.The directory will be created cleanly for each build; it is up to the
user to populate this directory instage_test. After stage_test, the directory will be moved to
$embody_logdir/test . The directory is created initially in the toplevel source directory because
some test procedures use relative paths in constructs like−I../include .

module_name = $NAME/$package_build
Full module name with version, refers to a file under$MODULE_ROOT.

module_dir = $MODULE_ROOT/$NAME
Path to modulefile without version.

force , verbose , quiet
These variables are non-empty when the corresponding options were specified. Useful for condition-
als in user-defined staging functions.

FILES
$EMBODY_HOME/bin/libembody

TheEmbody library.

<package_name>/EMBODY
User-generatedEmbody script.

$EMBODY_HOME/share/doc
Documentation and example files.

BUGS
Options must be given individually (cannot be clustered). This shouldn’t hurt too much unless you’re run-
ning EMBODYover and over.

Dry-run mode does not show actions inside staging functions.

SEE ALSO
module(1), modulefile(5), bash(1), rpm(8), rpmbuild(8)

<http://trac.anl.gov/embody/>

AUTHOR
Michael Sternberg, Center for Nanoscale Materials at Argonne National Laboratory.

COPYRIGHT
Copyright (C) 2009, UChicago Argonne,LLC; All Rights Reserved.

embody-1.0.4 2012-12-13 6

EMBODY(1) Environment Modules EMBODY(1)

OPEN SOURCE LICENSE
Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer. Software changes, modifications, or derivative works, should be noted with
comments and the author and organization’s name.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and
the following disclaimer in the documentation and/or other materials provided with the distribution.

3. Neitherthe names of UChicago Argonne,LLC or the Department of Energy nor the names of its con-
tributors may be used to endorse or promote products derived from this software without specific prior
written permission.

4. Thesoftware and the end-user documentation included with the redistribution, if any, must include the
following acknowledgment:

‘‘ This product includes software produced by UChicago Argonne, LLC under Contract No.
DE−AC02−06CH11357with the Department of Energy.’’

DISCLAIMER
THE SOFTWARE IS SUPPLIED‘‘ AS IS’’ WITHOUT WARRANTY OF ANY KIND.

Neither the United StatesGOVERNMENT, nor the United States Department of Energy, NOR UChicago
Argonne,LLC, nor any of their employees, makes any warranty, express or implied, or assumes any leg al
liability or responsibility for the accuracy, completeness, or usefulness of any information, data, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned rights.

embody-1.0.4 2012-12-13 7

